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Abstract 

Crystals of macromolecules often have two or more 
molecules per asymmetric unit, or contain domains of 
a macromolecule or a macromolecular complex that are 
structurally independent. In such cases the conventional 
molecular-replacement method attempts to determine the 
position of each structural unit independently. Typically, 
some parts of the structure can be determined more 
easily or more reliably than other parts. Methods are 
proposed whereby information from a part of a crystal 
structure that has been determined can be used to help 
determine the structure of the remainder. Two different 
strategies are discussed, 'subtraction' and 'addition'. 
With 'subtraction' strategy the Patterson function of 
the known part of the structure is subtracted from the 
'observed' Patterson. This approach is found to be most 
effective in the context of the rotation function in that 
it eliminates peaks that are irrelevant to the desired 
solution. With 'addition' strategy the structure factors 
of the known component are added to those of the 
search model. This procedure is most effective in the 
context of the translation function because it brings the 
structure factors calculated from the search model closer 
to those observed. Methods of applying the fast Fourier 
transform to facilitate these calculations are described. A 
number of examples are provided including structures of 
mutants of T4 lysozyme that might not have been solved 
without recourse to the proposed methods. A method 
of including information from a heavy-atom derivative 
in a translation function is also developed and shown 
to be superior in some situations to the conventional 
translation function. 

Introduction 

The basic idea of molecular replacement is to use the 
known structure of a macromolecule in one crystal form 
to determine the structure of the same or of a related 
macromolecule in new crystal forms (Hoppe, 1957; 
Rossmann & Blow, 1962; Huber, 1965; Rossmann, 
1972; Machin, 1985). If the molecule of interest can be 
approximated with a search model, it may be possible 
to place the search model in the unit cell of the 'new'  
crystal and so obtain a set of preliminary phases from 
which the actual structure can eventually be derived. 
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An ' ideal '  search model is one that matches exactly 
the entire structure that is to be determined. In practice, 
the search model and the structure to be determined 
may differ in many respects. For example, there may 
be changes in conformation of the desired structure 
relative to the search model or imperfect sequence and 
structural identity between the crystallized protein and 
the search model. Also the crystal may include regions or 
domains for which independent information is available, 
or there may be multiple copies of the molecule in the 
asymmetric unit. 

In these cases, if the complete structure cannot be 
solved in one step, it may be possible to use molecular 
replacement to solve the structure in parts. In principle, 
if the search model is capable of showing a detectable 
signal in both the rotation and translation functions, any 
part of a crystallographic asymmetric unit can be solved 
independently. In practice, search models for different 
parts of a crystal structure have different effectiveness, 
even if they correspond to the same fraction of the 
structure. For example, it is almost always the case 
that the rotation function for a crystal containing two 
or more molecules per asymmetric unit has unequal 
peak heights for the different molecules. Differences in 
crystal environment, in the mobility of distinct structural 
fragments, and in the resemblance of the search model 
to the crystal structure, can contribute to differences in 
search power. The type of secondary structures in the 
molecule of interest can also have a dramatic effect 
on the ability to determine its location: a-helical struc- 
tures seem to be more effective as search models than 
structures dominated by loops and/%sheets (Driessen & 
White, 1985; Sheriff, Padlan, Cohen & Davies, 1990). 
Thus, some parts of a crystal structure are usually easier 
to determine than others. In these situations, inclusion of 
the partial structural information that has been obtained 
can be helpful in searching for the remaining part. 

In this report, we describe two general methods ('addi- 
tion' and 'subtraction') used to enhance the effectiveness 
of molecular replacement by the inclusion of known 
structural information. In addition, a new translation 
function based on the incorporation of data from an 
isomorphous heavy-atom derivative is also proposed. 
Some aspects of the 'addition' method are available in 
the program packages MERLOT (Fitzgerald, 1988, 1991) 
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and X-PLOR (Briinger, Kuriyan & Karplus, 1987) but 
we are not aware of a comprehensive discussion of this 
subject. 

Theoretical background 
In molecular replacement the orientation and position 

parameters of an appropriate search model(s) are deter- 
mined by searching over the parameter space in order to 
minimize the difference between the observed structure 
amplitudes, Fo(h), and those calculated from the rotated 
and/or translated model [F¢(h)]. Alternatively, the search 
can be based on functions of Fo(h) such as the Patterson 
function. 

Mathematically, there are two types of functions that 
can be used to measure the difference between the 
observed and calculated data, namely the residual func- 
tion and the correlation function. If O is an operator 
(specifying a translation or a rotation or both) acting on 
a molecular model, the residual function, R(O), can be 
written as, 

e (o )  ---- Y]hl IFo(h)l - klOF~(h) [ I/EhlFo(h)l. (1) 

In general, the effectiveness of a residual function 
depends on the completeness of the search model and 
the accuracy of the scale factor k (Nixon & North, 1976). 

The correlation form of the rotation function (Ross- 
mann & Blow, 1962) can be written as, 

C r ( R )  = (PolRPc)/[(PolPo)(RPclRPc)] 1/2, (2) 

where R is a rotation operator, Po is the Patterson 
function derived from the observed intensities, Pc the 
Patterson function corresponding to the search model 
and ([) denotes the point-by-point sum of the product of 
the two functions enclosed within the parentheses. 

In the following paragraphs we define alternative 
correlation functions and discuss some mathematical 
ramifications, but the reader who is interested primarily 
in general principles can skip to the next section. 

The correlation function, C(f,g), between two sets of 
data, f and g, can be written as, 

C(f,g) = ( f lg) /[( f l f ) (glg)]  1/2, (3) 

where the brackets ((I)) indicate an integral of the 
product of the two enclosed data sets. There are two 
forms of the correlation function, one (sometimes called 
the product moment correlation) in which the average 
values of the f and g are subtracted, the other without 
subtraction (normalized inner product). Most of the 
commonly used rotation and translation functions utilize 
one form or the other of these correlation functions, and 
the integral is usually implemented as a summation. The 
first form of the correlation function (with subtraction), 
between a data set f, and a data set g acted on by an 
operator O, can be written as, 

c ~ ( f ,  O g )  = E ( f  - f A ) ( O g  - OgA) 
X [Y] ( f - -  fA)ZY](Og- OgA)2] -1/2, (4) 

where the subscript A indicates the average value of the 
corresponding data set. 

The second form of the correlation function (without 
subtraction) reduces to, 

Cz(f, Og) - E( fOg)/[G f f GOgOg] 1/2. (5) 

In the following discussion, we will focus on the 
correlation function, particularly (5), as the function to 
be minimized. In many crystallographic applications the 
averages o f f  and g are zero, in which case (4) reduces 
to (5). 

In the crystallographic context the volume integral 
of the rotation function [(2) and (5)] should include 
the intramolecular vectors while excluding as many 
intermolecular vectors as possible. For convenience, the 
integral volume is often chosen as a sphere or a spherical 
shell, centered at the origin of the Patterson function. In 
this case, the denominator in (2) is independent of the 
rotation operator R. Keeping this denominator, however, 
makes the range of values of Cr(R) physically more 
meaningful. 

Although it can be expressed mathematically in dif- 
ferent coordinate systems, the rotation function of (2) is 
most commonly calculated in either the Eulerian angular 
system (Crowther's fast rotation function) (Crowther, 
1972) or in the spherical polar angular system (Tanaka, 
1977) in order to take advantage of the high speed 
of the integration algorithm with spherical harmonic 
functions. Crowther's fast rotation function, for example, 
implements the spherical integral with summations of the 
series of coefficients (Kabsch, 1986). 

Cr,crowther(O~,/~,'y) = Et,m~,Ct~jn,Rt~,~(o~,fl,'y), (6) 

where {Cl,m, m, ] is the set of coefficients associated 
with the product of the two Patterson functions and 
the coefficients {Rt.m,.m } are associated with a rotation 
specified by (c~,13,'y) in an Eulerian angular system. 

One common problem in using these angular systems 
is that a rotation function contoured in the normal way 
will usually show a 'singularity' when a peak occurs at 
or close to some special positions. For example, in the 
polar angular system a peak at or near the origin will 
appear as a high value on the entire n = 0 section. This in 
turn will affect the apparent average value and standard 
deviation of the rotation function and will cause these 
values to change according to the reference orientation 
specified for the search model. For a rotation function 
defined with spherical polar angles, this problem can be 
avoided by representing the rotation-function map on a 
three-dimensional sphere. In this method, the spherical 
polar coordinates (~p,O,r) represent the sampling angles 
(~,0,e~). qo is between 0 and 180 °, 0 is between 0 and 
180 ° and ~ is between -180 and 180 °. The standard 
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deviation (tr) of the Cr(qO,0,/~ ) map can be defined as 
follows, 

O" = [y]/~2 sin OC2(~o,O,rO/~/,~2 sin 0] i/2. (7) 

With this definition, every sample point is weighted by 
its differential volume, and is thereby less dependent on 
the initial orientation of the search model. The method is 
an extension of the two-dimensional projection methods 
used in the rotation-function program GLRF (Tong & 
Rossmann, 1990). An example of the implementation of 
this method is given under Examples. 

Once the correct orientation of the search model has 
been identified, several types of translation function have 
been proposed to determine the translation parameters 
(Crowther & Blow, 1967; Nixon & North, 1976; Harada, 
Lifchitz & Beathou, 1981; Fujinaga & Read, 1987; Read 
& Schierbeek, 1988; Driessen et al., 1991). Translation 
functions are often classified as 'fast' or 'slow', accord- 
ing to whether or not the fast Fourier transform (FFT) 
can be applied (Rossmann, 1972). This, in fact, depends 
on the nature of the calculated structure factor F~(h,t) 
[= ]Fclexp(i~)]. If F~ is used as a complex number 
then the FFT can be applied to the translation function 
calculation. On the other hand if only a part of F~ is 
used this is no longer the case. The following translation 
function, for example (8), cannot be evaluated with the 
FF/' because it uses only the amplitude of the calculated 
structure factor, IF~[, which is not an analytical function 
of the translation vector t. 

Ct(t) = Eh[IFo(h) I -IFo(h)lA][IFc(h,t)l-  IFc(t)lA 
x {EhtlFo(h)l-  l fo(h)[a] 2 

× En[iF~(h,t)l_ I FAt)IA]: }-1/2, (8) 

As before, the subscript A indicates the average value. 
IF~(h,t)l is calculated as, 

IFc(h,t)[exp(i~) = Fc(h,t) 

= E~ymFc.pl(hRj)exp[i27rh(tj + Rjt)] 

(9) 

where R i and tj are the rotation and translation compo- 
nents of the jth symmetry operator of the crystal; t is 
the translational vector of the search model in real space 
and Fc.et is the structure factor of the correctly oriented 
search model calculated in the observed crystal cell but 
with symmetry P1. 

To take advantage of the FFT, the following transla- 
tion function can be used, 

Ct(t) = (Po[Pc(t)}/[(PolPo)(Pc(t)lPc(t))] 1/2 
2 2 1/2 = ~hlo(h)lc(h,t)/[Shlo(h)Zhl~ (h,t)] (10) 

where l(h) is the intensity [F(h)F*(h)]. Both the nu- 
merator and denominator can be calculated as functions 
of the translation vector t using the FFT. Because of the 

terms involving Ic(h,t) and 12(h,t), the maximum indices 
of coefficients for the Fourier transforms can be twice 
or four times as large, respectively, as those of the input 
structure factors. Therefore, in practice the coefficients 
often need to be truncated, especially for crystals with 
large unit cells. Also the denominator may be replaced 
with an approximation function. 

For example, the overlap function proposed by 
Harada and coworkers (Harada et al., 1981) uses Pc(u 
= 0 , t ) [ =  ~hlc(h,t)] to replace [(Pc(t)lPc(t))] ~/2 I = 
[Ehl~(h,t)]l/2}. It actually works as well as (10) in 
terms of signal-to-noise ratio, especially when a series 
truncation has to be made in (10). The physical meaning 
of including Pc(u = 0,t) is to monitor the value at the 
origin of the Patterson function of the calculated model 
while translating the model through the unit cell, looking 
for solutions that avoid interpenetration of different 
molecules. Similarly, (Pc(t)lP~(t)) considers the overall 
Patterson function, reducing the weight whenever there 
is intermolecular overlap. Since it is defined in terms 
of Patterson space rather than reciprocal space, (10) 
not only makes it possible to use the FFI', it also is 
physically more meaningful than (8). This may become 
clearer in subsequent discussion. 

In the following, we will refer to (2) and (10) as the 
'ordinary rotation function' and the 'ordinary translation 
function', respectively. 

Enhancement of molecular replacement by the incorpor- 
ation of known information 

Generally speaking, there are two ways to incorporate 
known structural information into molecular replace- 
ment, either by an 'addition' strategy or by a 'subtrac- 
tion' approach. The objective of the former is to increase 
the signal while the latter is intended to reduce the noise. 
In addition strategy, the information from the part of 
the structure that is known is used to supplement the 
search model for the remaining part still to be solved. 
The objective is that the structure factors or Patterson 
function calculated from the enhanced model will better 
resemble the observed data. For the addition strategy 
to be effective, the known structural information should 
provide an independent signal to the correlation function. 
This requires that the addition term respond to changes 
of the operator (e.g. a translational operator), rather than 
being a constant term that is added. 

With subtraction strategy, the information from the 
part of the structure that has been determined is sub- 
tracted from the observed data so that the modified 
observations will more closely represent the part of the 
structure still to be solved. Use of the subtraction strategy 
is intended to enhance the desired peaks by reducing 
noise and by eliminating peaks which correspond to the 
part of the structure already known. Subtraction strategy 
can be used only in Patterson space. It cannot be applied 
in the reciprocal space formulations such as in the 'slow' 
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translation function (8) which require the amplitudes 
of the structure factors. This is because a calculated 
structure factor cannot be subtracted from the amplitude 
of an observed reflection without knowledge of its 
phase information. The subtraction strategy requires a 
reasonably accurate scale factor between the observed 
and calculated data, which may be estimated with Wilson 
statistics (Schierbeek, Renetseder, Dijkstra & Hol, 1985) 
and from the knowledge of the percentage of the overall 
structure that is being subtracted. 

Suppose that a crystal structure consists of two parts, 
a and b, and that an appropriate search model has been 
used to determine either the orientation or the orientation 
plus translation of part a. The structure of part b is still 
to be determined. It is not necessary that a + b comprise 
the whole asymmetric unit, although this will be assumed 
for convenience. The Patterson function of the observed 
crystal can be written as, 

Po = Pa+b = P~ + Pb + P~b 

= Pa.intra + Paa + Pb.intra + Pbb + Pab, (11) 

where 

and 

Pa = ea,intra + Paa, (12) 

Pt, = Pb,intra + Pbb. (13) 

Pa,intra and Pb,intra include the intramolecular vectors 
while Paa and Pbb represent the intermolecular vec- 
tors between the symmetry-related a fragments and the 
symmetry-related b fragments, respectively. Pab includes 
the vectors between all the symmetry-related copies of 
fragment a and all the symmetry-related copies of frag- 
ment b. Decomposing into symmetry-related molecules 
(or fragments) Pa.intra and Pa can be expressed as follows, 

ea,intra(U) = E~YmSjPa.PI(U) 

= Eh[E)ymla,Pl(hRj)]exp(-i27rh.u), (14) 

Pa(u)  = Y]h la.usym(h)exp(-i27rh.u), (15) 

where Rj is the rotation matrix of the symmetry operator 
Sj, {la.el(h)} is the set of intensities associated with 
an isolated fragment a (i.e. only the unitary symmetry 
operator is present), and {Ia,Nsym(h)} is the set of inten- 
sities associated with all the symmetry-related copies of 
fragment a. Similarly, there are corresponding equations 
for eb.intra(U) and Pb(U). Consequently, every term in 
(11) has the same symmetry. 

Incorporation of  'subtraction' strategy in the rotation 
function. 'Subtraction' strategy can be applied in a very 
straightforward manner by subtracting either ea,intra or  Pa 
(= Pa,intra + Paa) f rom the observed Patterson function, 
Po, depending on whether the alignment or the complete 

location of part a is known. The rotation function, 
modified to include the subtraction strategy, can be 
written as follows, 

CrS(R) = ( ( eo  - k e ~ ) l R e b . p , )  

x [((Po - kPa)l(eo - kea)}(eb,p,lPb,e,}] -'/2, 

(16) 

where Pb,Pt is the Patterson function of a single search 
model for fragment b. Pa is calculated from the model 
for the known structural fragment. The scale factor k 
relating the observed and the calculated intensities is 
given by, 

k = fEhlo(h) /Ehla(h) ,  (17) 

where f is the fraction of the structure that corresponds 
to fragment a. {lo(h)} and {la(h)} are the observed and 
calculated intensity data sets, respectively. 

The main difference between the rotation function 
with the subtraction strategy and the ordinary rotation 
function is the subtraction of the term kPa from Po in 
(16). In general, this will reduce 'noise' in the rotation 
function map. For example, in the case where a and 
b represent two copies of the same molecule in an 
asymmetric unit, respectively (a known and b unknown), 
subtraction of Pa can significantly reduce the unwanted 
peaks at orientations corresponding to molecule a. 

Since the rotation function relies primarily on in- 
tramolecular vectors, the intermolecular vectors (Pa~) are 
usually less important. For this reason, knowledge of 
the translational parameters of a may not be necessary. 
Specifically, if only the orientation of fragment a is 
known, it may be possible to adjust the symmetry-related 
fragments away from each other so that most of the 
calculated (incorrect) intermolecular vectors (Paa) will 
fall outside of the integral sphere of the rotation function. 

Modification of  the rotation function to incorporate 
addition strategy. Direct implementation of addition 
strategy in the rotation function [i.e. replacement of RPc 
with (P~ + RPb.el) in (2)] leads to, 

e r e ( R ) -  (PoI(P~ + RP~.,.,)) 

× [(eoleo)((ea + Reb.e,)l(ea + Reb.el))] -1/2. 

(18) 

The extra term (PolPa} in the numerator does not depend 
on the rotation of the search molecule b. Thus, it adds 
a constant but is not expected to improve the signal-to- 
noise ratio of the rotation function. 

A method to use information from crystallographic 
symmetry to enhance the rotation function was pro- 
posed by Nordman (1986) and discussed further by 
Yeates (1989). Although it is not particularly effective 
in general, it may be helpful in reducing so-called 
symmetry bias (Yeates, 1989) when the search model 



XUE-JUN ZHANG AND BRIAN W. MATrHEWS 679 

has local symmetry that is similar to an element of 
the crystallographic symmetry. In this special situation 
the use of a model including local symmetry, e.g. a 
dimer or trimer, has the advantage that the intermolecular 
vectors will enhance the search power of the rotation 
function if these vectors also exist in the crystal. The 
technique of simultaneously searching for symmetry- 
related molecules is discussed in more detail in the 
Appendix. 

Similarly, information about local symmetry obtained 
from the self-rotation function (i.e. obtained without 
the use of a known structural model) can be incor- 
porated into a cross rotation function. This has been 
called the locked rotation function and is discussed by 
Tong & Rossmann (1990). Assume, for example, that 
the self rotation function shows one independent peak 
corresponding to a local symmetry element, e.g. a non- 
crystallographic rotation from molecule b to molecule a, 
which is represented by the rotation operation Rself. The 
modified rotation function that includes this information 
can be written as, 

CEr,self(R) = (Pol(1 + Rself)lPb,P1} 

x [(Po[Po}((1 + Rself)Reb,pll  

(1 + Rself)lPb,Pi)] -1/2. (19) 

With an algorithm similar to that discussed in the 
Appendix, one can show that this equation can be im- 
plemented within the framework of the fast rotation 
function. Equation (19) basically corresponds to the 
overlay of the ordinary rotation-function map on itself, 
but rotated by Rself. When the maps are superimposed 
the signal will rise but so will the noise. If the noise 
is distributed randomly, however, the superposition will 
improve the signal-to-noise ratio. In a case where the 
local symmetry includes a large number (n) of copies, 
e.g. in a virus crystal, the relative noise can be expected 
to be reduced by a factor of n 1/2 (Tong & Rossmann, 
1990). 

The translation function including both addition and 
subtraction strategy. An addition strategy has been used 
previously in an R-factor search (Bi et al., 1983), includ- 
ing determination of the relative origins of independently 
solved structural fragments in space groups in which 
there is a free choice of origin, in a correlation translation 
function search (Fujinaga & Read, 1987). Similarly, 
subtraction of the intramolecular vectors of the search 
model from the observed Patterson map has been con- 
sidered in some Patterson space translation functions 
(Rossmann, Blow, Harding & Coller, 1964; Crowther 
& Blow, 1967). 

As before, we assume that part a of the desired 
structure is known in its entirety and, in addition, the 
rotation of part b is also known. A translation function 
(20) that incorporates both subtraction and addition 
strategies and, at the same time, allows the application 
of the FFT, can then be defined. 

Ct(t) = (P'ol[Pab(t) + Pbb(t)])/{ (P'olP'o) 

x ([Pab(t) + Pbb(t)l[[Pab(t) + Pbb(t)]}} 1/2. (20) 

Pab(t) corresponds to the calculated intermolecular vec- 
tors from all the symmetry-related a parts to all the 
symmetry-related b parts, and Pbb(t) corresponds to the 
vectors generated by all the symmetry-related b parts. 
P'o is a modified observed Patterson map defined by, 

P'o = Po - k(Pa + eb,intra) ~ eo,ab 4- eo,bb. (21) 

The numerator of (20) has been independently 
proposed by Driessen et al. (1991) as the 'non- 
crystallographic translation function'. 

Equation (20) can be implemented as follows, 

Ct(t) = EhFo(h)[lab(h,t) + lbb(h,t)] 

X {~,h[l'o(h)]2Eh[lab(h,t) + Ibb(h,t)] 2}q/2, (22) 

where 

Fo(h) = lo(h) - k[Ic,a(h) + E~ymlb.el(hRj)], (23) 

Iab(h,t) = Fc,a(h)~ymFb* e l (hRj)  

x exp[-i27rh(tj + Rjt)] + c.c., (24) 

and 

Ibb(h,t) = ~ymFb,Pl(hRj)exp[i27rh(tj  + Rjt)] 

x [~j~)Fb*pl(hRj , ) ]  

× exp[-i27rh(t/ + R/t)]  + c.c., (25) 

where c.c. stands for the corresponding complex con- 
jugate. (Alternatively one can remember that the sum 
of a function plus its complex conjugate equals twice 
the real part of the function.) The parameter k in (23) 
specifies the amount of subtraction of the constant intra- 
and intermolecular vectors from the observed Patterson 
function. The upper limit of k is estimated using Wilson 
statistics and is modulated by the structural percentage 
of the included model(s), similar to (17). In the lower 
limit k can be set equal to zero. Both the numerator and 
denominator of (22) can be evaluated with the FFT by 
using coefficients indexed conjugated to the translation 
vector t. For a crystal that has a space group with a prim- 
itive lattice (P), the summations over the symmetries 
in (23)-(25) should include all of the crystallographic 
symmetry operators. For space groups that have non- 
primitive lattices (e.g. C or R), the lattice symmetry 
operators should not be included in the summations in 
(23)-(25) but should be included in the calculation of 
Fb.el (h). This procedure is equivalent to performing the 
translation search in a reindexed primitive (and therefore 
smaller) unit cell. 

The combination of subtraction and addition strate- 
gies in a single translation function should significantly 
enhance its effectiveness, particularly when much of 
the structure is known and the part that remains to be 
determined is a relatively small fraction of the unit cell. 
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Use of heavy-atom derivative information to determine 
translation 

When attempting molecular replacement it is com- 
mon, whenever possible, to use heavy-atom information 
to check the results. A difference map with ampli- 
tudes [ IFen(h) l  - IFp(h)l]  and phases from the proposed 
molecular-replacement model should show peaks at the 
heavy-atom sites (Cygler & Anderson, 1988). (Fp is the 
structure amplitude of the native protein and Fell that 
of the heavy-atom derivative. Usually Fe is the same as 
Fo but here we need to distinguish the observed ampli- 
tude of the native crystal from that of the heavy-atom 
derivative.) Even though a single heavy-atom derivative 
may provide fairly reliable coordinates for the heavy- 
atom binding sites, it need not give sufficiently good 
phases to allow determination of the crystal structure. 
One approach in this situation is to calculate a single 
isomorphous replacement electron-density map and to 
use the structural model to search directly in this map. 
The method is extremely powerful, with a very high 
signal-to-noise ratio (Bode et al., 1983; Reynolds et al., 
1985), although in the most general case can require 
a lengthy six-dimensional search. If a solution to the 
rotation function has been obtained it reduces the six- 
dimensional search to one in three dimensions and the 
translation search can be performed with the FFT as 
follows, 

T(t) = fcell P o b s ( X ) P m o d e l ( X  - -  t) dx (26) 

= EhmelFe(h)lexp(iqov)F*(h)exp(-i27rh.t) (27) 

= EhmelFe(h)lexp(i~ov)F*(h,t). 

IFp[ is the observed protein structure amplitude, qOe 
the (approximate) protein phase and mp the figure of 
merit. In its correlation function form (27) was proposed 
as the so-called 'phased translation function' by Read 
& Schierbeek (1988). The structure factor Fc(h,t) may 
include not only the full crystallographic symmetry, as 
Read & Schierbeek pointed out, but also information 
from a known structural fragment as we have suggested 
in the context of the other translation functions. The 
phased translation function can be written as 

Ct,phased(t) ---- EhmelFe(h)lexp(iqoe)F*(h,t) 
× [EhmfllF2lEhlFc(h,t)12]-l/2. (28) 

With the inclusion of knowledge of part of the structure, 
F~ becomes 

Fc(h,t) = Fa(h) + E~ymFo,el(hRj)exp[iZTrh(tj + Rjt)]. 

(29) 

Furthermore, the phase information {qoe,me} is not 
limited to that from the heavy-atom derivatives. For 
example a structure partially solved with molecular 
replacement may provide similar information (Bentley 
& Houdusse, 1992). 

In a crystal of space group P1, a part of a structure 
that has been correctly oriented can be used to define 
the origin and to provide approximate phases for the 
structure factors Fp(h). These partial structure phases 
may then be used to determine or confirm heavy-atom 
site(s) relative to the same origin. With the phased 
translation function technique, such phases can also be 
used to locate other parts of the crystal structure (Bentley 
& Houdusse, 1992). For non-P1 space groups the same 
principle can be applied by expanding the observed 
structure amplitudes [Fp(h)l  to a P1 space group and 
using a similar technique to determine the heavy-atom 
positions. By comparing the 'local' symmetry of the 
heavy-atom sites in the P1 cell with the crystal sym- 
metry, the translation vector of the initial search model 
(correctly oriented but arbitrarily positioned) may be 
determined (Cygler & Anderson, 1988). 

In the following, we propose an alternative way to 
use heavy-atom-derivative information to determine the 
translation vector of a structural fragment, assuming that 
its rotational parameters are known. This 'heavy-atom' 
translation function, Tn(t), is defined as follows, 

Tn(t) = Eh[IFpH(h)[- IFe(h)l]exp[iqoc(h,t)] 

× ~jexp(-i27rhxj), (30) 

where the 99c(h,t)'s are the phases calculated with (9) 
from the correctly oriented but translated model and xj 
are the fractional coordinates of the jth heavy atom. 
The idea behind (30) is to monitor the known heavy- 
atom site(s) while translating the search model through 
the unit cell. When the search model is at the correct 
position, Tn(t) will have a relatively high value which 
corresponds to the electron densities at the monitored 
heavy-atom site(s). Because the choice of the heavy- 
atom coordinates will have fixed the origin, the trans- 
lation search should, in general, cover the whole unit 
cell. 

For reasons similar to those discussed in the context 
of the slow translation function, (30) cannot be evaluated 
with the FTT. A modified version that allows the use of 
the FFF can be obtained by the introduction of a factor 
[Fc(h,t)l/lFe(h)l, i.e. 

Th(t) = Y ] h l [ l F e H ( h ) [  -1 Fe(h)l]/lFe(h)l} 

x Fc(h,t)~jexp(-i2rhxj).  (31) 

Here, Fc(h,t) [equation (9)] is an analytical function 
of t, and hence Tb(t) can be written as a series of 
Fourier syntheses with coefficient indexes conjugated to 
the translation vector t. Strictly speaking, for TH to be 
equivalent to T~ the introduced factor IFc(h,t)l/IFp(h)l 
should be a constant, which is unlikely. In practice, how- 
ever, it seems sufficient to simply omit reflections for 
which Fp(h) is small and thereby avoid the introduction 
of large errors (see below). 
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One advantage of the Tn(t) function is that it makes 
use of additional information (i.e. the heavy-atom posi- 
tions) which is independent of the intermolecular vec- 
tors. Therefore, a solution provided by this approach is 
independent of any solution obtained from the ordinary 
translation function. Another useful feature of the func- 
tion Tn(t) is that it is less sensitive than the correlation 
translation functions to the incompleteness of the search 
model. In test examples (see below), both (30) and (31) 
were always superior to the ordinary translation function 
(10) and especially so in cases where the search model 
constituted a relatively small fraction of the content of 
the asymmetric unit. The TH function works well if all 
coefficients ( ]FeHI-  IFpl) are included. In the case of the 
T~ function the signal-to-noise ratio was progressively 
improved by deleting more and more of the weaker 
reflections (IFPI) up to about 50% of the observed data 
(Table 4). 

The program 

The rotation-translation function package consists of a 
suite of three major programs designed to interface to 
the general-purpose macromolecular structure refinement 
package TNT (Tronrud, Ten Eyck & Matthews, 1987). 
The first program ALMN calculates fast rotation function 
coe f f i c i en t s ,  At ,rn ,n ,  from structure factors Fc or Fo. 
The second program, ROTFUN, calculates the rotation 
function between two Patterson functions. The third 
program, FASTRAN, calculates a modified version of 
the fast translation function of Harada et al. (1981). 
All input is in a keyword-leading free-formatted form. 
The programs are coded to run on DEC machines under 
VAX/VMS, but should be readily transportable. Copies 
of the programs with write-ups and example command 
files are available on request from the authors (e-mail: 
CHK@ UOXRAY.UOREGON.EDU).  

Examples 

Tests of the potential and the limitations of the proposed 
methods include examples of the rotation function with 
the subtraction strategy (16), the translation function 
with both addition and subtraction strategies (20), and 
the two translation functions using heavy-atom deriva- 
tive information [(30) and (31)]. Crystallographic data 
for wild-type T4 lysozyme and a mutant of the enzyme 
that crystallizes in a non-isomorphous form are used as 
representative examples. 

Wild-type T4 lysozyme crystallizes in space group 
P3221 with one molecule per asymmetric unit. The struc- 
ture was solved using multiple isomorphous replacement 
(Matthews & Remington, 1974) and refined to an R 
factor of 0.165 with data to 1.7 A resolution (Weaver & 
Matthews, 1987; Bell et al., 1991). The protein consists 
of one peptide chain of 164 amino-acid residues, folded 
into two domains that are connected by a 20-residue 

Table 1. Rotation-function tests based on wild-type T4 
lysozyme 

Model T4L, 162 includes the whole T4 iysozyme molecule, T 4 L ~ o  
includes just the N-terminal domain (residues 1-60) and T4L61 162 
includes just the C-terminal domain (residues 61-162). T4L, 6o[61- 
162]A uses residues 1-60 as the search model but also assumes 
that the orientation of residues 61-162 is known, i.e. the intra- 
molecular vectors contributed by these atoms are subtracted from 
the Patterson function. (The center of residues 61-162 was moved 

10 A from its correct position to the center of the molecule as a 
whole.) T4L, 6o[61-162]B again uses residues 1-60 as the search 
model but assumes that both the orientation and the translation of 
resudes 61-162 are known. The rotation functions were calculated 
using (16) and sampled at increments of (3,3,3:'). Observed struc- 
ture amplitudes between 3.5 and 7 A, resolution were included, and 
an 18,~, radius was used for the volume integration. (p-a)/ t r  
gives the number of standard deviations (or) that the peak height 
(p) is above the average value (a) (which is close to zero for this 
calculation). The same measures are used in the following tables. 
A peak that is more than 10 ° away from the correct soution is 
considered as a noise peak. The 'angular error' is the discrepancy 
between the apparent angular orientation indicated in the rotation 
function and that corresponding to the actual refined structure. 

Magnitude 
of peak closest Magnitude 

to correct Ranking of highest 
Search solution of peak noise peak Angular 
model (p - a)/~r height (p - a ) / ~  ~r error C) 
T4L~ ,62 8.2 1 3.9 0.036 0.0 
T4Lt~o 4.1 28 4.8 0.035 7.6 
T4L6, ,6~ 7.1 1 3.7 0.038 3.1 
T4L~ ~o[61-162]A 4.2 1 4.0 0.035 7.2 
T4L~ ~[61-162]B 5.0 ! 4.0 0.036 4.2 

a-helix extending from residues 60 to 80. The amino- 
terminal domain includes residues 1-60 and consists of 
several/~-sheet strands and a few loops as well as two 
helices. The carboxyl terminal domain (residues 80-164) 
is dominated by helical secondary structure. 

To test the rotation function including, in particular, 
the effectiveness of the subtraction strategy (16), the 
refined structure of wild-type T4 lysozyme (i.e. the 
whole molecule) as well as the N-terminal and C- 
terminal domains considered separately, were used as 
representative search models. The results, summarized 
in Table 1, indicate that the segment consisting of 
residues 1-60 alone is not sufficient to give a distinct 
solution in that the desired peaks are not the highest 
in the rotation function map (Fig. la). However, when 
information derived from knowledge of the orientation 
and translation of the fragment comprising residues 
61-162 is included the desired solution emerges as the 
highest peak (Fig. l b). Subtraction of the contribution 
of the known part of the structure from the observed 
Patterson function not only makes the solution detectable 
but also reduces the rotational error from 7.6 ° (if the 
solution could be recognized) to 4.2 ° . 

Successively smaller segments of the structure of 
T4 lysozyme were also used as search models to test 
the translation function (20). The results are shown in 
Table 2 and Fig. 2. Even a relatively small fraction 
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Table 2. Fast translation-function tests based on wild- 
type T4 lysozyme 

Equation (20) with maximum index cutoff  = 50 was used to 
calculate the translation function including data between 3.5 and 
7.0 A resolution. The conventions used to define the search models 
are as used in Table 1. When search model T4L~o_3o is used, i .e.  
residues 10-30 o f  T4 lysozyme, the desired peak is not detected 
above the noise. When knowledge of  the orientation and transla- 
tion of, for example, residues 1-9 are included, as in T4L,o_3o[1-9], 
the desired peak is the highest in the map. 

Magnitude 
of  peak closest Magnitude 

to correct Ranking of  highest 
Search solution of  peak noise peak 
model (p  - a ) / t r  height (p  - a ) / t r  
T4L~_~62 25.5 I 12.5 
T 4 L ~  11.5 1 7.3 
T4Ll~o 9.9 1 7.0 
T4L~_3o 8.0 1 5.6 
T4L~o_3o 5.0 21 6.5 
T4L~o_3o[l-9] 6.7 1 6.0 
T4L~o_~60-80] 8.3 1 5.1 
T4L,o_3o[l-9,31-160] 19.9 1 5.1 
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Fig. 1. Illustration of the use of the subtraction method in the rotation 
function. The example is for T4 lysozyme (space group P3221) as 
in Table 1. The crystallographic a axis is horizontal (positive to the 
right) and the c axis is vertical. Section ~ = 0.0 ° is shown. A rotation, 
~, about an axis (T,O) should be indicated by a peak with coordinates 
(~,O,~). The distance of the peak from the center of the figure gives the 
angle of rotation (~). In this case the search model is residues 1--60 of 
T4 lysozyme aligned relative to the same axes as in the actual crystal 
structure. Therefore, in the section ~ = 0.0 ° two peaks are anticipated 
at the positions indicated by the arrowheads. One peak is expected at 
the origin corresponding to the identity superposition and the second 
peak is expected at 0 = 0, ~ = 120 ° (plus the symmetry mate at 
0 = 180, r = 120 °) corresponding to superposition of the search 
domain on the lysozyme molecule related by the crystallographic 32 
symmetry operator. The first contour (broken line) is at 2.0tr and 
subsequent contours are at increments of 0.5(7 where tr is the standard 
deviation of the map calculated using equation (7). (a) Search using 
residues 1--60 alone. (b) Search using the same model (residues 1-60) 
but subtracting from the observed Patterson function the Patterson 
function of fragment 61-162 (see Table 1). In this case peaks at the 
desired positions (arrowheads) are clearly seen. 

of the whole molecule (e.g. residues 1-30) can give 
a correct determination of the desired translation. It 
appears that the effectiveness of the translation function 
is less dependent on the completeness of the search 
model than is the rotation function (compare Table 1 with 
Table 2). When a search model alone is being used (20), 
which reduces to (10), works at least as well in terms 
of signal to noise as Harada's TO/O function (Harada et 
al., 1981) (data not shown). As shown in Table 2 the 
inclusion of knowledge of even a small fragment (13%) 
of the molecule (e.g. residues 1-9 or 60-80) significantly 
improves the power of the translation function. In the 
case that the search model itself is small (residues 
10-30), this improvement can be dramatic. 

A second example is provided by the polyalanine 
mutant lysozyme 9001A, or E128A/V131A/N132A/ 
K135A/S136A/R137A/Y139A/N140A/Q141A, in which 
the nine amino acids Glu128, Vall31, etc. are all 
substituted with alanine. The mutant was crystallized 
from 0.1 M phosphate, 20% PEG, pH 6.5 with space 
group P21 andcell  dimensions a = 40.4, b = 112.3, c = 
135.2/~ and fl = 91.7 °. The crystal solvent parameter, 
VM (Matthews, 1968), suggested that there might be five 
(I'M = 3.4/~ 3 Da -l) or six (VM = 2.8 A 3 O a  -1)  molecules 
per asymmetric unit. 80% of the possible data were 
collected in the range 4.0-12.0/~ resolution. 

A self-rotation calculation with data between 4.5 and 
9.0 ,~, resolution and 20/~ radius of integration showed a 
local fivefold axis of symmetry, perpendicular to the 21 
axis, b, and approximately parallel to a. The highest self- 
rotation peak, corresponding to the fivefold axis, was 
58% that of the origin peak. This strongly suggested 
that there were five molecules in the asymmetric unit and 
limited possible solutions of the cross-rotation function. 
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The general course of the subsequent determination of 
the structure is outlined in Table 3. In the initial cross- 
rotation function search (step 2, also performed with data 
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Fig. 2. Illustration of the use of addition strategy (20) in the translation 

function. The tests are based on T4 iysozyme using as a search model 
the fragment consisting of residues 10-30 (Table 2). The desired 
translation peak is expected at the origin which is at the center of the 
map section shown. The first contour is drawn at 2tr and subsequent 
contours are at increments of tr. (a) Search model consists of residues 
10-30 alone. The peak at the desired position (arrowhead) is the 21st 
highest in the whole map. (b) Same search model (residues 10-30) 
but incorporating knowledge of the position of residues 1-9. The peak 
at the desired position (arrowhead) is now the highest in the whole 
map. (c) Same search model (residues 10-30) but assuming that the 
rest of the lysozyme structure (residues I-9 plus 31-162) is known. 
The peak at the desired position (arrowhead) is obvious. 

from 4.5 to 9.0A resolution and a 20 A integration 
radius), a variety of different lysozyme search models 
with different hinge-bending angles were tested (Faber 
& Matthews, 1990; Dixon, Nicholson, Shewchuk, Baase 
& Matthews, 1992; Zhang, Baase & Matthews, 1992). 
Mutant I3PA (Dixon et al., 1992) seemed best and was 
used for all subsequent searches. (Later, it was found 
that the backbone atoms of the five monomers in the 
9001A structure differ, respectively, from I3PA by root- 
mean-square values of 0.80, 0.51,0.72, 0.80 and 0.79 A.) 
In the initial cross-rotation function calculation (Table 
3, step 2) the top three peaks corresponded to desired 
solutions (molecules A, E, B), followed by a noise 
peak. By subsequently making use of the determined 
location of molecule A (step 4), the rotation function 
revealed the rotations corresponding to the remaining 
four molecules above the next highest noise peak. It 
should be noted, however, that the benefit of including 
the located molecules does not go on indefinitely. By 
step 8, for example, at which point molecules A, B and 
C have been located and included in the calculation, the 
peak for molecule E is not the highest and no peak at 
all was apparent for molecule D. The fifth molecule was 
located by applying the fivefold rotation followed by 
rigid-body refinement. Another approach, perhaps more 
general, would have been to first reduce accumulated 
error by refining the structures of the known parts of the 
structure (molecules A, B, C, E) and repeating step 10 
with this improved information. This is illustrated in step 
10', which is identical to step 10 except that molecules A, 
B, C and E were first subjected to rigid-body refinement. 
Following location of all five molecules, refinement 
with data between 6.0 and 3.0A resolution gave a 
crystallographic residual of 16.1% with discrepancies of 
bond lengths and bond angles from expected values of 
0.015 and 2.4 ° , respectively. 

In summary, by the use of the 'subtraction' method 
the signal-to-noise ratio in the subsequent cross-rotation 
function searches was improved and the errors of the 
derived rotation angles were also reduced. Experience 
suggests that an improvement of even a couple of 
degrees in the orientation inferred from a rotation func- 
tion can significantly improve the subsequent translation 
function search. 

The example used to test the T,  and T~ functions 
is based on the crystal structure of the methionine 
aminopeptidase from E. coli (Roderick & Matthews, 
1993). The crystal has space group P21, with cell pa- 
rameters a = 39.0, b = 61.7, c = 54.5/~ and fl = 107.3 ° 
and one molecule per asymmetric unit. The structure 
was solved by multiple isomorphous replacement and 
refined to an R factor of 18.2% at 2.4 A resolution. The 
search model used for the translation function TH was 
that of the refined model which contains 261 amino-acid 
residues. The heavy-atom compound was a Pb derivative 
with two binding sites per asymmetric unit. The average 
difference between the observed structure amplitudes for 
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Table 3. Molecular-replacement determination of the structure of mutant lysozyme 9001A 

See text for  an explanat ion o f  the various steps. (16) and (20) were used for  the ro ta t ion  and correla t ion t ransla t ion-funct ion searches, 
respectively. In all cases except step 10' the search model(s) corresponds  to mu tan t  T4 lysozyme I3PA. The ' ro ta t ional  e r ror  o f  solution'  
is the e r ror  determined following final refinement o f  the crystal structure. Unless stated otherwise, da ta  between 4.5 and 9 A resolut ion 
were used in all calculations, and a 20 A integral radius was used for  the ro ta t ion-funct ion search. 

Molecule Magni tude  o f  
sought in Molecules peak closest Rota t iona l  Magni tude  

ro ta t ion  or  included Ranking  to correct  er ror  o f  o f  highest 
t ranslat ion in the o f  peak solution solution noise peak 

Funct ion funct ion calculation height (p - a) /  tr (°) (p  - a ) /  tr 
Step 1 Self-rotation - -  - -  I 58% of origin - -  - -  
Step 2 Rotation A I 4.9 2.4 3.9 

E 2 4.2 4.8 
B 3 4.0 4.8 
D 5 3.8 9.3 
C 7 3.6 2.9 

Step 3 Translation A l 3.4 - -  2.8 
Step 4 Rotation B A 1 4.1 1.3 3.6 

E 2 4.1 4.5 
D 3 3.8 11.0 
C 4 3.6 3.7 

Step 5 Translation B A 1 8.2 - -  6.2 
Step 6 Rotation C A + B 1 4.2 3.3 4.1 

E 4 4.0 4.7 
D 5 3.8 10.3 
D' 9 3.6 6.5 

Step 7 Translation C A + B 1 8.1 - -  4.7 
Step 8 Rotation E A + B + C 2 4.0 3.8 4.3 

E'  5 3.7 2.5 
D - -  - -  - -  

Step 9 Translation E A + B + C I 11.0 - -  5.3 
Step 10 Rotation D A + B + C + E . . . .  
Step 10' Rotation D A + B + C + E 2 4.3 6.0 4.4 
Step 11 Translation D A + B + C + E 1 8.6 - -  4.7 

Table 4. Comparison of Tn, T'H and C, functions 

T h e  T n ,  T;~ and C, functions were calculated using (30), (31) and (10), respectively. Two independent  heavy-a tom sites in a lead 
derivative o f  methionine aminopept idase  (Roder ick  & Matthews,  1993) were moni to red  for  the Tn and T;~ functions.  Data  f rom 4 to 
10 A resolution were included. The  search model  incorpora ted  successively smaller fractions o f  the complete  protein,  starting in all cases 
f rom the amino terminus. In the case o f  the Tk function it is expected that  the inclusion o f  observed structure ampli tudes !Fpl that  are 
small may  introduce errors.  Therefore ,  the calculat ion was carried out  two ways, (a) including all IFpl, and (b) including only the 
strongest  60% o f  the amplitudes,  IFpl. Delet ion o f  the weakest 40% o f  the data  greatly enhances the T;~ funct ion and makes it a lmost  
comparab le  with Tn.  Both Tk and T n  are superior  to the convent ional  t ranslat ion funct ion C,. 

T,, Th C, 
Magni tude  Magni tude  Magni tude  

o f  peak o f  peak o f  peak 
Fract ion o f  closest to Highest  closest to Highest  closest to Highest  
protein used correct  noise correct  noise correct  noise 
as search solution Ranking peak solution Ranking peak solution Ranking peak 
model  (%)  (p - a) / t r  of  peak (p - a ) / t r  (p - a ) / t r  of  peak (p - a ) / t r  (p - a ) / t r  of  peak (p - a) /cr  

(a) (b) (a) (b) (a) (b) 
1 4.9 8.7 14.8 1 1 3.8 5.0 9.8 
I 4.4 5.2 11.8 i I 4.5 4.8 7.3 
I 4.2 5.7 9.4 I 1 4.4 4.6 4.3 
1 3.7 5.0 8.0 I 1 4.1 4.1 2.1 
1 3.6 3.3 5.8 25 1 4.3 4.5 1.8 

100 13.5 1 2.3 
80 10.3 1 3.1 
60 9.1 1 2.8 
40 7.4 13 2.5 
20 4.5 11 3.2 

the native and Pb data is 13.7% and the Cullis R value for 
centric reflections 62% (Roderick & Matthews, 1993). 
Table 4 shows a comparison of the relative effectiveness 
of the heavy-atom translation function, TH (26) and 
T~ (27) as well as the ordinary translation function 
(10). When the whole protein molecule is used as the 
search model all methods give a very clear-cut result. 
As the search molecule reduces to successively smaller 

fractions of the asymmetric unit, however, both the TH 
and T~ functions become much superior to the normal 
translation function. 

Concluding remarks 

A variety of different examples indicate that the quality 
of rotation and translation functions can be improved by 
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the use of orientation information, or orientation plus 
positional information, from a part of a crystal structure 
that is already known. In addition to the examples 
given, a number of mutants of T4 lysozyme, non- 
isomorphous with wild-type, and having two or more 
molecules in the asymmetric unit, have been solved 
(Heinz, Baase, Dahlquist & Matthews, 1993; Blaber, 
Zhang & Matthews, 1993; X.-J. Zhang, M. Blaber & 
D. W. Heinz, unpublished results). In some cases the 
correct solutions of rotation and translation functions that 
were otherwise obscure became apparent. In other cases 
signal to noise was improved. 

Among a number of possible approaches, the rotation 
function with subtraction strategy and the correlation 
translation function with addition strategy were found 
to be most successful. The reason for the former is 
that the ordinary rotation function includes noise arising 
from unwanted correlations between different parts of 
the crystal structure. Subtraction of a part of a structure 
that is known will delete peaks and noise due to this 
part, allowing the remainder to become more significant. 
The reason for the success of the addition strategy in the 
translation function is that the total model becomes more 
complete which in turn increases the resemblance of the 
Patterson function Pc(u,t) to Po(u). 

Suppose one has a crystal with multiple copies of 
a protein in the asymmetric unit. With the availability 
of the modified rotation and translation functions, one 
suggested procedure for structure determination is as fol- 
lows. An ordinary rotation function is used first to detect 
(some of) the molecular orientations, at least roughly. 
This is followed by a rotation function incorporating 
subtraction strategy to refine the solution(s). The second 
step can be repeated if and when additional information 
becomes available. Knowledge of the orientations and/or 
the positions of different parts of the structure can then 
be used in translation function searches. In this way 
the known structural information can be used to help 
determine or refine both the orientational and transla- 
tional parameters of individual fragments of the overall 
structure. 
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APPENDIX 

A modified algorithm to simultaneously search for 
symmetry-related molecules in a rotation function 

Some attempts have been made to use the informa- 
tion from crystal symmetry to improve the potential of 

rotation functions. A simultaneous search for symmetry- 
related molecules in a rotation function was proposed by 
Nordman (1986). The rotation function, N(R), proposed 
by Nordman is, 

N(R) = (eol~-~fYmSjRec) 
X [(Po[Po)(~~fymsjRecl~-~ymsjRec)] -1/2. (A1) 

It has been reported (Yeates, 1989) not to be particu- 
larly effective because the information in an observed 
Patterson map is redundant. Only the information from 
one asymmetric unit is required to determine the orien- 
tation of the search model. The simultaneous search of 
symmetry-related molecules will in general increase both 
the signal peaks and the noise peaks, leaving the ratio 
approximately the same. The numerator of (A 1) can be 
written as, 

(eol~]ymsjRec> = ~]ym(sfIpolRPc)= nsym(PolRPc), 
(A2) 

which is simply the ordinary rotation function (5) mul- 
tiplied by a constant. Usually, the denominator of (A 1) 
is not sensitive to rotation R. In one special situation, 
however, Nordman's approach may be helpful in reduc- 
ing the so-called symmetry bias in the rotation function. 
This happens when the search model has local symmetry 
that is similar to the symmetry of the crystal and the 
search model is oriented so that the two symmetry op- 
erators coincide. In this case, the denominator becomes 
significantly larger than usual. 

Yeates (1989) rewrites the Nordman's rotation func- 
tion N(R) in a form similar to the following 

N(R) = cCr(R)/Q(R) (A3) 

where c is a constant, C r ( R )  is the ordinary rotation 
function, and Q(R) is a sum of self-rotation functions of 
the Patterson function of the search model. 

Q(R) : (1/nsym)~ym(sjRPclE?mS/RPc) 

= (PcIR-I(E~ymsj)RPc) (A4) 

w h e r e  nsym is the number of symmetry operators. Yeates 
proposed an interpolation algorithm to calculate this 
function. It requires calculating Cr(R) and the self- 
rotation function of (PcIRec) separately, followed by 
r/sy m interpolations at every sampling point. In the fol- 
lowing, an alternative approach is described which is 
conceptually simpler. Although no direct comparison is 
available the following approach also seems easier to 
implement. 

In the Eulerian angular system, a rotation function can 
be written (Kabsch, 1986) as, 

Cr, Crowther(O~,fl,~) = ~-~Q,m,m' Cl,m,m' Rl,m',m(O~'~'~) (A5) 
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where the Ct~ ~, and Rt~, ~ are the coefficients cor- 
responding to the Patterson functions and the rotation 
operator R, respectively. The coefficients are calculated 
with spherical harmonics and spherical Bessel functions. 
Since a Patterson function has a center of symmetry, 
Ct~,,,m, in (A5) vanishes whenever l is odd. Mathemati- 
cally, the summation in (A5) is a matrix contraction. 

By definition, in the Eulerian angular system a rotation 
R specified with angles (cz,/3,7) can be divided into three 
consecutive rotations about the y and z axes. 

R(t~,/~,7) = Rz(oORy(fl)Rz(7).  (A6) 

The corresponding spherical harmonics coefficients 
(Crowther, 1972) can be written as, 

Rtjn,.m(O~,/~,7) = exp(im'7)dl~,~n(f l )exp( imoO. (A7) 

With spherical harmonics, a series of  consecutive 
rotation operations can be represented as a matrix mul- 
tiplication. Therefore, the Q(R) function in (A4) can be 
written as, 

Q(o~,/3,7) = (P~IR(--7,-/3,--~ )(~jSj)R(o~,/~,7)Pc) 

= Etx,,~,,,,,,.,,, C't~,,~,,'Rt~'n(--7,-fl,--a) 
x St,n,n,Rt.n,m(C~,fl,7), (A8) 

where C't~j, ,, are the coefficients corresponding to the 
Patterson function of the search model and St.,,., , , is 
the coefficient associated with the crystal symmetry 
operators {R(asj , f ls j ,Tsj) ,  j = 1, nsym}. 

St,n, n, = ~fymRl,n,n,(Otsj,t~sj,Tsj ). (A9)  

An implementation of this algorithm is available as an 
option in our molecular-replacement program package. 
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